TeilzeitkursData Science Bootcamp

Gib deiner Karriere mit unserem 22-wöchigen Teilzeit-Bootcamp einen Anstoss und erwirb neue Fähigkeiten in Python, Data Analytics, Machine Learning, Deep Learning, NLP und Generative AI.

Jetzt bewerben
Data Science Studentin am Lernen
clock

Teilzeit

2
2

Wochen

zurich

Zürich

language

Englisch

Programm Überblick

Du willst deine vorhandenen Fähigkeiten weiter ausbauen, um deine Karriere voranzutreiben, neue Technologien dazu lernen, oder nach einer längeren Pause den Einstieg zurück in die Arbeitswelt schaffen? In jedem Fall ist unser Programm genau das Richtige für dich. Wir haben unseren Lehrplan so gestaltet, dass er die aktuellsten Technologien enthält, die derzeit auf dem Arbeitsmarkt gefragt sind. Zudem ermöglicht dir unser Teilzeitprogramm, dass du weiterhin 100% arbeitest und somit kein Risiko eingehst.

Data Science Intro Video

Upcoming Dates

Kursdaten

04. März - 31. Juli

Anmeldefrist

11. Feb.

Gebühr

12'700 CHF

Kursdaten

19. Aug. - 23. Jan.

Anmeldefrist

29. Juli

Gebühr

12'700 CHF

  • clock

    Der Zeitplan passt nicht zu deinen Bedürfnissen?
    Schau dir unsere Online-Optionen oder das Vollzeit-Programm an.

  • dollar-sign

    Auf der Suche nach Finanzierung? Schau dir unsere Finanzierungsmöglichkeiten an.

Zeitplan

  • Di

    Online

    • 18.00 - 21.00Vorlesung
  • Do

    Online

    • 18.00 - 21.00Praxisübungen
  • Sa *

    Vor Ort

    • 09.00 - 12.00Vorlesung
    • 13.00 - 16.00Praxisübungen

    * Der Kurs findet jeden zweiten Samstag statt.

VorlesungLerne von unseren Referenten, die Experten auf ihrem jeweiligen Gebiet sind, und werde während der Live-Vorlesungen in neue Themen eingeführt.

PraxisübungenBearbeite eine Reihe von interessanten und herausfordernden Übungen zu den Themen, die in der vorherigen Vorlesung behandelt wurden. Übe deine Teamfähigkeit, indem du gemeinsam mit deinen Mitstudenten Gruppenprojekte durchführst.

Wo unsere Studenten Arbeit finden

Finde deinen Traumjob - wir unterstützen dich auf dem Weg dorthin!

Axpo
Swiss International Air Lines
Google
Swisscom
Axa
Ergo Group
Ebay
Novartis
Adobe
Pagoda
Elca
Ginetta
Atos
Ippen Media
Roche
ETH Zurich
Pictet
Upc
Qualityminds
Avrios
APGSGA
Axpo
Swiss International Air Lines
Google
Swisscom
Axa
Ergo Group
Ebay
Novartis
Adobe
Pagoda
Elca
Ginetta
Atos
Ippen Media
Roche
ETH Zurich
Pictet
Upc
Qualityminds
Avrios
APGSGA
Sygnum
Web Republic
Synvert
Brack
UBS
Globus
Credit Suisse
Migros
Ruag
Accenture
Ernst & Young
Dormakaba
Comparis
Climeworks
Mediaire
Six Group
Swiss Re Group
SAP Software Solutions
Edge5
Smartfactory
Sygnum
Web Republic
Synvert
Brack
UBS
Globus
Credit Suisse
Migros
Ruag
Accenture
Ernst & Young
Dormakaba
Comparis
Climeworks
Mediaire
Six Group
Swiss Re Group
SAP Software Solutions
Edge5
Smartfactory
arrow
Thi Tuyen Nguyen

Thi Tuyen Nguyen

Data Science

Der intensive Lehrplan des Bootcamps hat mich aus meiner Komfortzone herausgeholt, meine Widerstandsfähigkeit und meine Leidenschaft für kontinuierliches Lernen gestärkt und mich mit den wesentlichen Fähigkeiten für eine transformative Karriere in der Datenwissenschaft ausgestattet.

VorherPostdoctoral Researcher

NachherArtificial Intelligence Intern bei Baader Bank AG

arrow

Was du lernen wirst

  • Nach der Bewerbung

    Vorbereitungsaufgaben

    Unser Data Science Kurs ist sehr anspruchsvoll und intensiv. Daher haben wir einen Vorkurs zusammengestellt, der dich gezielt darauf vorbereitet. Je nach deinen Vorkenntnissen sind hierfür etwa 1-2 Wochen intensives arbeiten erforderlich.
    • Lerne über Statistik, Wahrscheinlichkeitsrechnung, lineare Algebra, Versionskontrolle und Python.
    • Über einen Discord-Kanal erhältst du dabei schnell und unkompliziert Hilfe durch unser Data Science Team.
  • Woche vor dem Start

    Offene Runde

    Triff deine Mitstudenten während der offenen Runde in der Woche vor Programmbeginn. Überprüfe die Vorbereitungsarbeit und tausche deine Probleme und Lösungen mit der Klasse aus.
  • Woche 1 - 3

    Data Science Toolkit

    • Werde vertraut mit den für Data Science relevanten Tools und Programmiersprachen.
    • Python-Grundlagen für Data Science, Versionskontrolle (Git und GitLab), SQL-Datenbanken, Organisieren und Strukturieren von Data Science Projekten.
    • Umfangreiches Data Wrangling in Python (Zugriff auf Online-Daten über APIs, Datenbereinigung und -exploration mit Pandas).
    • Arbeite sowohl mit JupyterLab als auch einer integrierten Entwicklungsumgebung.
  • Woche 4 - 5

    Statistik und Versuchsplanung

    • Verwende statistische Methoden, wie zum Beispiel A/B-Tests, zur Unterstützung der Entscheidungsfindung.
    • Wende induktive Statistik, Parameterschätzungen und Hypothesentests auf Data Science-Probleme an.
    • Lerne über probabilistische Modellierung und verallgemeinerte lineare Modelle und löse Probleme aus der Praxis.
  • Woche 6 - 7

    Datenvisualisierung

    • Erzeuge komplexe Visulisierungen, um Erkenntnisse aus Daten zu extrahieren und dies visuell ansprechend und überzeugend zu erzählen.
    • Erstelle interaktive Darstellungen und Dashboards mit Tools wie Matplotlib, Seaborn, Plotly und Dash.
  • Woche 8 - 11

    Maschinelles Lernen

    • Erstelle komplexe End-to-End-Pipelines für maschinelles Lernen.
    • Gewinne einen detaillierten Einblick in Supervised Learning (Regression und Klassifikation) sowie in Unsupervised Learning (Clustering, Outlier-Detektion und Dimensionalitätsreduktion).
    • Erlernen von ML-Kernkonzepten (z.B.: Gradientenabstieg, lineare vs. nicht-lineare Modelle, Verlustfunktionen, Kreuzvalidierung, Tuning).
    • Löse reale Probleme: Umgang mit unausgewogenen Daten, Auswahl geeigneter Modelle, Optimierung der Leistungsfähigkeit eines Modelles durch Hyperparameter-Tuning und interpretiere Modelle mit Frameworks wie LIME und SHAP.
    • Lerne die neuesten Weiterentwicklungen, Anwendungen und Frameworks für Auto-ML (PyCaret, TPOT und Auto-Sklearn) kennen.
  • Woche 12 - 14

    Deep Learning

    • Lerne die Theorie und Geschichte hinter neuronalen Netzen und Deep Learning kennen.
    • Baue deine eigenen neuronalen Netze mit TensorFlow und Keras.
    • Verwende Deep-Transfer-Learning- und state-of-the-art Deep-Learning-Modelle, um Computer-Vision-Probleme wie Bildklassifizierung und Segmentierung zu lösen.
    • Interpretiere und erkläre Deep-Learning-Modelle mit Techniken wie Grad-CAM.
  • Woche 15 - 17

    Sprachverarbeitung

    • Erlernen von NLP-Kernkonzepten (z.B.: Named Entity Recognition, Topic Modeling, Dokumentenklassifikation, Ähnlichkeit, Embeddings, usw.).
    • Lerne und übe, wie man unstrukturierten Text in strukturierte Merkmale umwandelt und darauf klassische ML-Modelle trainiert.
    • Löse diverse Probleme wie Klassifizierung, Empfehlungen, Zusammenfassung, Named Entity Recognition und mehr.
    • Verwende Deep Learning Modelle und Transfer Learning einschliesslich Transformern, um komplexere Aufgaben zu lösen (Sprachübersetzung, kontextuelle Ähnlichkeit, semantische Suche und mehr).
    • Erfahre mehr über Generative KI im Bereich NLP, Prompt Engineering und grosse Sprachmodelle (LLMs) wie ChatGPT, um vielfältige NLP-Aufgaben einschliesslich QA Chatbots zu lösen.
  • Woche 18

    Machine Learning Engineering

    • Lerne, wie du ein Data Science Projekt effektiv angehst, indem du konventionelle Workflows verwendest und eine saubere Projektstruktur erstellst.
    • Lerne die Best Practices von MLOps kennen, z.B. Modell- und Datenversionskontrolle, Experiment-Tracking, Modell- und Code-Tests und CI/CD für ML-Projekte.
    • Anschliessend verwenden wir Docker zum Verpacken eines Machine Learning Modells, fügen ein API als Schnittstelle hinzu und bringen es auf einen Cloud-Server.
  • Woche 19 - 22

    Abschlussprojekt

    • Du kannst aus einer Liste von vordefinierten Projekten auswählen, die auf realen Problemen basieren oder du bringst dein eigenes Data Science Projekt mit.
    • Während der Projektphase deckst du den kompletten Data Science Prozess ab: Von der Definition des Business-Problems, der Untersuchung der Daten, der Anwendung geeigneter Machine Learning Modelle, bis hin zur Fertigstellung eines funktionalen Prototyps.
    • Die Krönung all der harten Arbeit ist eine öffentliche Präsentation, auf die wir dich vorab intensiv vorbereiten werden.

Bewerbungsprozess

  • checkBewirb dich einfach hier
  • check

    Sende uns deinen Lebenslauf oder dein LinkedIn-Profil

  • check

    Ein erstes Motivationsgespräch mit Constructor Academy

  • check

    Bereite dich nun auf das technische Interview vor

  • check

    Bestehe das technische Interview

  • check

    Überweise eine Anzahlung, um deinen Platz zu sichern

  • check

    Schliess die Vorbereitungsarbeiten vor Beginn des Bootcamps ab

Bereite dich auf den Kurs vor

Kostenloser Data Science Einführungskurs

Online
Selbststudium
Kostenlos

In diesem kostenlosen Online-Tutorial zum Selbststudium lernst du Python und den Lebenszyklus von Data-Science-Projekten kennen und übst an einem realen Data-Science-Problem. Durch den Abschluss dieses Kurses erhältst du ein besseres Verständnis für die Data-Science-Welt und erhöhst deine Chancen, in das Bootcamp aufgenommen zu werden.

Geschätzte Kursdauer: 15 Stunden

Themen

Datenanalyse

Untersuche grosse und komplexe Datensätze, um Erkenntnisse, Trends und Muster aufzudecken, die als Entscheidungsgrundlage dienen können.

ML & AI

Trainiere Computeralgorithmen, um Muster zu erlernen und auf der Grundlage von Dateneingaben Vorhersagen oder Entscheidungen ohne ausdrückliche Anweisungen zu treffen.

DevOps

Effiziente Verwaltung von Teamaufgaben und Zusammenarbeit mit GitLab. Stelle deine Anwendungen im Web bereit und verbinde sie nahtlos miteinander.

Python

Python erobert die Welt!

Python ist in vielen Bereichen Marktführer:

  1. Datenanalyse
  2. Maschinelles Lernen
  3. Künstliche Intelligenz
  4. Wissenschaftliche Forschung
  5. Software Prototyping
  6. Generative KI
  7. Und mehr...

Praktische Erfahrung

Über 360 Stunden praktisches Training

Nimm an der KI-Wende teil!

Unsere Kursleiter

Was uns auszeichnet sind unsere Kursleiter. Neben unserem internen Data Science Team wirst du von ausgewählten Experten aus der Industrie unterrichtet werden. Diese externen Dozenten halten uns im stetigen Austausch mit den Trends und Anforderungen der Industrie. Zudem ermöglicht es uns - und auch dir - ein weitreichendes Netzwerk aufzubauen. Wir legen viel Wert auf die Wahl von Dozenten mit herausragenden didaktischen Fähigkeiten und verbessern unseren Unterricht fortlaufend auf Basis eures Feedbacks. Erhalte einen eigenen Eindruck von unserem Dozententeam und ihren verschiedenen Fachgebieten.

Kursleiter

Unsere Abschlussprojekte

Was uns wesentlich von anderen Bootcamps abhebt, ist, dass wir dir ECHTE Projekte mit ECHTEN Unternehmen anbieten. Wir sind fortlaufend damit beschäftigt Unternehmen zu finden, die spannende Projekte für dich und deine Mitstudierenden bereitstellen. Dieses Projekt ist hervorragend für dein Bewerbungs-Portfolio geeignet. Wir haben auch immer wieder Studierende, die direkt von einer dieser Firmen rekrutiert werden. Solltest du dich für ein bestimmtes Unternehmen interessiere, setzen wir uns gerne in Verbindung und versuchen ein gemeinsames Projekt zu starten.

Abschlussprojekte

Schliesse deine berufliche Transformation mit einem Abschlussprojekt ab.

Vorbereitungsphase

Organisiere dein Projekt

  • Empfange und/oder definiere die Anforderungen
  • Setze Meilensteine

Entwicklungs-/Erstellungsphase

Arbeite im Team

  • Nutze kollaborative Tools
  • Teile und koordiniere verschiedene Aufgaben
  • Lerne von deinen Teamkollegen
  • Entwickle dein erstes reales Projekt

Präsentation

Hinterlasse deine ersten Spuren in der Branche

Präsentiere dein Abschlussprojekt zusammen mit deinen Teamkollegen vor Teilnehmern aus unserem Netzwerk.


Es gibt noch keinen Termin für die Abschlussprojekte. Trage dich in unseren Newsletter ein und werde benachrichtigt, sobald der nächste Termin veröffentlicht wird.

arrow
einen-schritt-voraus-erkennung-ungewohnlicher-menschlicher-bewegungen
Data Science

Einen Schritt voraus: Erkennung ungewöhnlicher menschlicher Bewegungen

Projekt von:
Alaa Elshorbagy, Vincent von Zitzewitz, and Jonas Voßemer

Projektbeschreibung
arrow
Vollständige Liste anzeigen.

Wähle den gewünschten Standort

Besuche unseren Campus in Zürich

Möchtest du sehen wie deine Zeit bei Constructor Academy aussehen könnte und wo unsere Studenten die meiste Zeit verbringen? Dann kontaktiere uns für einen Besuch auf unserem Campus.

Constructor Academy
Lintheschergasse 7
8001 Zürich
+41 (0)44 797 51 50

Termin vereinbaren

Finanzierungsformen

Wir bei Constructor Academy sind der Meinung, dass die Finanzen niemals ein Hindernis für den Zugang zu einer Weiterbildung sein sollten, die dem Einzelnen helfen kann, seine Ziele zu erreichen. Deshalb bieten wir diverse Finanzierungsmöglichkeiten an, um unsere Kurse für eine Vielzahl von Studenten zugänglich zu machen. Ausserdem arbeiten wir mit externen Organisationen zusammen, die bedürftigen Personen finanzielle Unterstützung zu gewähren.

Bundesagentur für Arbeit logo
Kanton zurich amt für arbeit logo
Women plus plus logo

Zertifikat von Top Coding Schule

Erhalte ein Zertifikat von Constructor Academy, einer der weltweit führenden Coding-Akademien. Teile dein Zertifikat in sozialen Netzwerken, CVs und mehr. Fördere deine Karriere mit den neu erworbenen Fähigkeiten.

Certificate

Bevorstehende Veranstaltungen

Nimm an einer unserer Veranstaltungen teil. Entdecke unsere kommenden Workshops, Infoveranstaltungen, Abschlusspräsentationen und Webinare zu aktuellen Themen.

  • Tag der offenen Tür | Zürich

    calendar26. Nov 24, 06:00 PM - 07:00 PM GMT+1

    map-pinLintheschergasse 7, 8001 Zürich

    Komm am Donnerstag, den 26. November, zu unserem Open Day vorbei! Wir freuen uns, dir unseren neuen Campus im Herzen von Zürich zu zeigen – ein Ort, der darauf ausgelegt ist, dich bestmöglich zu unterstützen. Entdecke unsere Karriereprogramme im Tech-Bereich und unsere Kurzkurse in Python und Generative AI. Nutze die Gelegenheit, unseren Campus live zu erleben und zu sehen, wie wir dich auf deinem Weg in die Tech-Welt begleiten können. Wir freuen uns auf dich!

Empty room with chairs

FAQs

  • Was ist das nicht-technische Interview?

    caret

    Ein 20 Minuten Interview, welches persönlich oder über Video durchgeführt wird und uns die Möglichkeit gibt, dich, deine Berufserfahrung, Motivation und Ziele für die Teilnahme am Programm kennenzulernen.

  • Wann ist die Studiengebühr für die Teilzeit-Bootcamps zu bezahlen?

    caret

    Bei der Anmeldung musst du eine nicht erstattungsfähige Anzahlung von CHF/EURO 3'500 leisten, um deinen Platz im Programm zu reservieren. 1/2 des Restbetrags ist bis zum Ende der zweiten Woche des Programms und 1/2 bis zum dritten Monat des Programms fällig.

  • Wie sieht der Kursplan für das Teilzeit-Bootcamp aus?

    caret

    Das Teilzeit-Bootcamp ist ein 22-wöchiges Programm, mit Vorlesungen jeden Dienstag und Donnerstag von 18.00 - 21.00 Uhr und jeden zweiten Samstag. Darüber hinaus investieren unsere Studenten einige zusätzliche Stunden ihrer Freizeit, um das Gelernte zu wiederholen und an Projekten zu arbeiten.

  • Wie sieht das technische Interview für das Data Science-Programm aus?

    caret

    Der Kandidat erhält eine E-Mail mit einer Liste von Python-Tutorials, die vor dem Vorstellungsgespräch zu bearbeiten sind. Datum und Uhrzeit des Interviews werden so festgelegt, dass etwa eine Woche Zeit bleibt, um sich darauf vorzubereiten.
    Am Tag des Vorstellungsgesprächs erhält der Kandidat per E-Mail eine Datenanalyse-Aufgabe und hat 2 Stunden Zeit, daran zu arbeiten. Nach dem Einreichen der Ergebnisse wird im direkten Anschluss ein Mitglied des Constructor Academy-Teams online Fragen zur Data Challenge stellen. Darauf folgt ein 30-minütiges Programmier-Interview in Python. Der gesamte Prozess dauert 2 Stunden und 45 Minuten und basiert auf den zuvor gesendeten Tutorials.

  • Auf welche Stellen kann ich mich nach dem Bootcamp bewerben?

    caret

    Mit dem Abschluss unseres Data Science Bootcamps eröffnen sich zahlreiche Möglichkeiten auf dem Technologie-Arbeitsmarkt. Hier sind einige der Stellen, auf die du dich als Absolvent bewerben kannst: • Data Scientist • Data Analyst • Data Engineer • Data Architect • Machine Learning Engineer • Business Intelligence Engineer

Kontaktiere uns

Lehrkräfte

Team Member

Marcus Lindberg

linkedin

Data Science Part-time Program Manager

Als er seine Karriere in der klinischen Immuntherapieforschung begann, erkannte er den dringenden Bedarf an besseren Möglichkeiten, Patientendaten sinnvoll zu nutzen. Mit wachsendem Interesse an personalisierten Therapien absolvierte er einen MSc in Bioinformatik an der University of Edinburgh und schloss sich der Clinical Bioinformatics Unit der ETH Zürich an. Jetzt kann er bei SIT Learning seine analytischen Fähigkeiten weiter verfeinern und gleichzeitig Menschen dabei helfen, ihre Ziele zu erreichen.

Team Member

Dr. Mark Rowan

linkedin

Instructor

Was treibt dich an? Für mich ist es mit Daten eine Geschichte zu erzählen und die Welt zu verändern. Egal ob es um Neurowissenschaften, Luft- und Raumfahrt, Telekommunikation, Versicherungen oder Sprachtechnologie geht - ich liebe es, mich in die Daten hineinzuversetzen und damit Dinge zu bewegen.

Team Member
company

Gerry Liaropoulos

linkedin

Instructor

Als erfahrener Data Scientist auf dem faszinierenden Gebiet der Biowissenschaften setze ich eine Vielzahl von Methoden des maschinellen Lernens ein, um der Industrie zu helfen, fundiertere Entscheidungen zu treffen mit dem Endziel, das Leben der Patienten positiv zu verändern.

Team Member

Patrick Senti

linkedin

Freelance Analytics Consultant

Patrick baut seit 1995 Analyselösungen und wendet dabei maschinelles Lernen an, Datentechnik, Datenanalyse und Visualisierung. Hilfe für Kunden im Finanzbereich, Transport- und Einzelhandelsindustrie seine Erfahrung umfasst Software-Engineering & Architektur in verteilten Systemen von Unternehmens-Backends bis hin zu mobilen & IoT-Systemen. Leitender BI/Data Science & Software-Ingenieur seit 1995 * Angewandte Datenwissenschaft, Datentechnik, Softwaretechnik, große Daten * Breite Branchenerfahrung in den Bereichen Finanzen, Einzelhandel, Logistik Rollen * Datenwissenschaftler/Daten & ML-Ingenieur, Softwaretechnik, Beratung * Leitende Datenanalyse-Praxis bei swissQuant * Senior Software Engineering, Technischer Leiter bei Credit Suisse, Logicalis, SAS, IBM Bildung * CAS ETH Zürich in Informatik & Verteilte Systeme * Schweizer Dipl. Wirtschaftsinformatik (Professional Master) * Exekutiv-MBA Freiberuflicher Analytik-Berater, patrick@productaize.io Gründer von omegaml.io Unterstützung von Unternehmen bei der Produktion und Operationalisierung von ML

Team Member

Dr. Ekaterina Butyugina

linkedin

Data Science Program Manager & Instructor

Ekaterina studierte Mathematik an der Universität und arbeitete als Nachwuchsforscherin in Russland, wo sie in Kontinuumsmechanik promovierte. Auf der Suche nach der Möglichkeit, etwas zu finden, das der Wissenschaft nahe kommt, aber dynamischer und auf das reale Leben anwendbar ist, trat sie dem Data Science-Programm bei, blieb dann als TA und schloss sich später dem Team als Data Science Consultant an. Sie arbeitet gerne mit Daten und wendet sowohl analytische als auch kreative Ansätze an, probiert neue Techniken aus und teilt sie mit anderen Menschen.

Unser Blog

Lies die neuesten Nachrichten über Constructor Academy und informiere dich über alles rund um Programmierung und Data Science in der Schweiz und Deutschland.

ein-anfangerleitfaden-fur-full-stack-entwicklung

Ein Anfängerleitfaden für Full-Stack-Entwicklung

von Claudia Boker

der-ultimative-guide-zum-python-lernen

Der ultimative Guide zum Python-Lernen

von Claudia Boker

constructor-academy-als-top-data-science-bootcamp-2024-ausgezeichnet

Constructor Academy als Top-Data-Science-Bootcamp 2024 ausgezeichnet

von Claudia Boker